Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 307: 122528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522326

RESUMO

Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Pele , Cicatrização , Engenharia Biomédica
2.
Adv Sci (Weinh) ; 11(4): e2307266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032132

RESUMO

Triboelectrification necessitates a frictional interaction between two materials, and their contact electrification is characteristically based on the polarity variance in the triboelectric series. Utilizing this fundamental advantage of the triboelectric phenomenon, different materials can be identified according to their contact electrification capability. Herein, an in-depth analysis of the amino acids present in the stratum corneum of human skin is performed and these are quantified regarding triboelectric polarization. The principal focus of this study lies in analyzing and identifying the amino acids present in copious amounts in the stratum corneum to explain their positive behavior during the contact electrification process. Thus, an augmented triboelectric series of amino acids with quantified triboelectric charging polarity by scrutinizing the transfer charge, work function, and atomic percentage is presented. Furthermore, the chirality of aspartic acid as it is most susceptible to racemization with clear consequences on the human skin is detected. The study is expected to accelerate research exploiting triboelectrification and provide valuable information on the surface properties and biological activities of these important biomolecules.


Assuntos
Aminoácidos , Ácido Aspártico , Humanos , Epiderme , Pele , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 16(1): 1502-1510, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147587

RESUMO

Development of rapid detection strategies that target potentially pathogenic bacteria has gained increasing attention due to the increasing awareness for better health and safety. In this study, we evaluate an intrinsically antimicrobial polymer, 2Gdm, which is a poly(norbornene)-based functional polymer featuring guanidinium groups as side chains, for bacterial detection by the means of triboelectric nanogenerators (TENGs) and triboelectric nanosensors (TENSs). Attachment of bacteria to the sensing layer is anticipated to alter the overall triboelectric properties of the underlying polymer layer. The positively charged guanidinium functional groups can interact with the negatively charged phospholipid bilayer of bacteria and lead to bacterial death, which can then be detected by optical microscopy, X-ray photoelectron microscopy, and more advanced self-powered sensing techniques such as TENGs and TENSs. The double bonds present along the poly(norbornene) backbone allow for thermally induced cross-linking to obtain X-2Gdm and thus rendering materials remain stable in water. By monitoring the change in voltage output after immersion in various concentrations of Gram-negative Escherichia coli (E. coli) and Gram-positive Streptococcus pneumoniae (S. pneumoniae), we have demonstrated the utility of X-2Gdm as a new polymer dielectric for autonomous bacterial detection. As the bacterial concentration increases, the amount of adsorbed bacteria also increases, resulting in a decrease in the surface potential of the X-2Gdm thin film; this reduction in surface potential can cause a decrease in the triboelectric output for both TENGs and TENSs, which serves as a key working mechanism for facile bacterial detection. TENG and TENS systems are capable of detecting E. coli and S. pneumoniae within a range of 4 × 105 to 4 × 108 CFU/mL with a limit of detection of 106 CFU/mL. This report highlights the promising prospects of employing TENGs and TENSs as innovative sensing technologies for rapid bacterial detection by leveraging the electrostatic interactions between bacterial cell membranes and cationic groups present on polymer surfaces.


Assuntos
Bactérias , Escherichia coli , Guanidina , Norbornanos , Poli A , Polímeros , Streptococcus pneumoniae
4.
Sci Adv ; 9(4): eadc8758, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696504

RESUMO

Interruption of the wound healing process due to pathogenic infection remains a major health care challenge. The existing methods for wound management require power sources that hinder their utilization outside of clinical settings. Here, a next generation of wearable self-powered wound dressing is developed, which can be activated by diverse stimuli from the patient's body and provide on-demand treatment for both normal and infected wounds. The highly tunable dressing is composed of thermocatalytic bismuth telluride nanoplates (Bi2Te3 NPs) functionalized onto carbon fiber fabric electrodes and triggered by the surrounding temperature difference to controllably generate hydrogen peroxide to effectively inhibit bacterial growth at the wound site. The integrated electrodes are connected to a wearable triboelectric nanogenerator (TENG) to provide electrical stimulation for accelerated wound closure by enhancing cellular proliferation, migration, and angiogenesis. The reported self-powered dressing holds great potential in facilitating personalized and user-friendly wound care with improved healing outcomes.


Assuntos
Bandagens , Cicatrização , Humanos , Fontes de Energia Elétrica
5.
Biosens Bioelectron ; 219: 114783, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257116

RESUMO

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.

6.
Nat Commun ; 12(1): 180, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420069

RESUMO

The highly reactive nature of reactive oxygen species (ROS) is the basis for widespread use in environmental and health-related fields. Conventionally, there are only two kinds of catalysts used for ROS generation: photocatalysts and piezocatalysts. However, their usage has been limited due to various environmental and physical factors. To address this problem, herein, we report thermoelectric materials, such as Bi2Te3, Sb2Te3, and PbTe, as thermocatalysts which can produce hydrogen peroxide (H2O2) under a small surrounding temperature difference. Being the most prevalent environmental factors in daily life, temperature and related thermal effects have tremendous potential for practical applications. To increase the practicality in everyday life, bismuth telluride nanoplates (Bi2Te3 NPs), serving as an efficient thermocatalyst, are coated on a carbon fiber fabric (Bi2Te3@CFF) to develop a thermocatalytic filter with antibacterial function. Temperature difference induced H2O2 generation by thermocatalysts results in the oxidative damage of bacteria, which makes thermocatalysts highly promising for disinfection applications. Antibacterial activity as high as 95% is achieved only by the treatment of low-temperature difference cycles. The current work highlights the horizon-shifting impacts of thermoelectric materials for real-time purification and antibacterial applications.


Assuntos
Antibacterianos/farmacologia , Bismuto/farmacologia , Desinfecção/métodos , Peróxido de Hidrogênio/farmacologia , Nanotecnologia/métodos , Telúrio/farmacologia , Filtros de Ar , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bismuto/química , Recuperação e Remediação Ambiental , Escherichia coli/efeitos dos fármacos , Peróxido de Hidrogênio/química , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Oxigênio , Telúrio/química , Temperatura , Têxteis , Difração de Raios X
7.
J Mater Chem B ; 8(16): 3192-3212, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32068221

RESUMO

Ultrasensitive and highly accurate bioassays are critically required for the early detection of various biomarkers and diagnosis of cancer. Electrogenerated chemiluminescence (ECL) is one such technique which shows powerful analytical ability by incorporating ECL active species for sensitive detection of targets. In this regard, the development of ECL as an assay technique is constantly being pushed for better performance and lower detection limits. Incorporation of sensitive immunosensing and aptasensing methods with ECL has the ability to multiply the advantages several-fold. The recent progress in and methods utilized for the enhancement and amplification of ECL detection techniques based on highly sensitive immunosensors and aptasensors have been discussed in this review with regard to widely popular techniques.


Assuntos
Técnicas Biossensoriais , Luminescência , Medições Luminescentes , Tamanho da Partícula , Propriedades de Superfície
8.
J Food Drug Anal ; 28(4): 595-621, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696148

RESUMO

Digital microfluidic (DMF) platforms have contributed immensely to the development of multifunctional lab-on-chip systems for performing complete sets of biological and analytical assays. Electrowetting-on-dielectric (EWOD) technology, due to its outstanding flexibility and integrability, has emerged as a promising candidate for such lab-on-chip applications. Triggered by an electrical stimulus, EWOD devices allow precise manipulation of single droplets along the designed electrode arrays without employing external pumps and valves, thereby enhancing the miniaturization and portability of the system towards transcending important laboratory assays in resource-limited settings. In recent years, the simple fabrication process and reprogrammable architecture of EWOD chips have led to their widespread applications in food safety analysis. Various EWOD devices have been developed for the quantitative monitoring of analytes such as food-borne pathogens, heavy metal ions, vitamins, and antioxidants, which are significant in food samples. In this paper, we reviewed the advances and developments in the design of EWOD systems for performing versatile functions starting from sample preparation to sample detection, enabling rapid and high-throughput food analysis.

9.
J Mater Chem B ; 6(16): 2368-2384, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254455

RESUMO

Advances in nanoparticle research, particularly in the domain of surface-engineered, function-oriented nanoparticles, have had a profound effect in many areas of scientific research and aided in bringing unprecedented developments forward, particularly in the biomedical field. Surface modifiers/capping agents have a direct bearing on the major properties of metal nanoparticles (MNPs), ranging from their physico-chemical properties to their stability and functional applications. Among the different classes of capping agents, dendrimers have gained traction as effective multifunctional capping agents for MNPs due to their unique structural qualities, dendritic effect and polydentate nature. Dendrimer-coated metal nanoparticles (DC-MNPs) are typically produced by both (i) a one-pot strategy, where metal ions are reduced in the presence of dendrimer molecules and (ii) a multi-pot strategy, where a sequence of reactions involving the reduction of metal ions, activation, conjugation and purification steps are involved. These DC-MNPs have shown remarkable ability to stabilize MNPs by means of electrostatic interactions, coordination chemistry or covalent attachment, due to them entailing a large number of sites at which further molecular moieties can be conjugated. This review article is an attempt to consolidate the on-going work, particularly over the last five years, in the field of the synthesis of dendrimer-coated MNPs and their potential applications in bioimaging, drug delivery and biochemical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...